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The influence of white noise on the dynamics of a delayed electrically coupled pair of Hidmarsh-Rose
bursting neurons is studied. In particular a simple method to predict the intensity of noise that can destabilize
the quiescent state is proposed and compared with numerical computations. Furthermore, it is demonstrated
that quite small noise completely destroys the exact synchronization of bursting dynamics, and a qualitative
explanation of this effect is discussed.
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I. INTRODUCTION

Bursting is one of the three main regimes of neuronal
membrane dynamics �1�. Its time pattern is distinguished
from that of quiescent or spiking dynamics by the appear-
ance of groups of spikes interspersed by periods of quiescent
or subthreshold oscillatory behavior. It is expected that a
burst of spikes is much more reliable for inducing responses
in postsynaptic cells than a single spike, hence the impor-
tance of understanding its dynamical properties.

The bursting can occur as a reaction of a single neuron to
proper external excitation, but it can also occur due to the
synaptic coupling between pairs of neurons. Synaptic trans-
mission is a process much more complicated and much
slower than the propagation of spikes along an axon. Thus, in
modeling the dynamics of synaptically coupled neurons one
should either include the details of the synapses or resort to
simple phenomenological models, which then need to in-
clude the time lag explicitly. It is well known that an explicit
time lag of physically reasonable duration can have profound
effects on the dynamics of coupled neurons. For example, an
important effect, which has been recently demonstrated �2�,
is that the time lag facilitates exact synchronization among
bursting electrically coupled neurons.

The response of real neurons to synaptic or external
stimuli is always influenced by many processes that are com-
monly modeled by different types of noise. Thus, only the
effects observed in models of neuronal dynamics which are
stable under the influence of noise should be seriously con-
sidered as realistic.

In this paper we shall analyze the generation and synchro-
nization of bursting in a delayed coupled pair of Hidmarsh-
Rose �HR� neurons �3� influenced by white noise. The model
is given by the following system of stochastic delay-
differential equations �SDDEs�:

dx1 = �Fx�x1,y1,z1� + c�x1 − x2��t − ���dt + �2D dW ,

dx2 = �Fx�x2,y2,z2� + c�x2 − x1��t − ���dt + �2D dW ,

dyi = Fy�xi,yi,zi�dt, i = 1,2,

dzi = Fz�xi,yi,zi�dt, i = 1,2, �1�

where Fx, Fy, and Fz are the components of the HR fast-slow
neuronal model �3�,

Fx = y + 3x2 − x3 − z + I, Fy = 1 − 5x2 − y ,

Fz = − rz + rS�x + 1.6� , �2�

and the term c�xi�t�−xj�t−��� represents delayed electrical
coupling. We shall illustrate the results of our analysis for
two sets of fixed typical values of the parameters I=3.2, r
=0.006, S=4 and I=0, r=0.0021, S=4, with variable param-
eters c, �, and D. The parameter D measures the intensity of
the noise, and dW is the stochastic increment of the Wiener
process, satisfying E�dW�=0, dWdW=dt, where E�¯� de-
notes the expectation with respect to the process. Notice that
the noise is assumed to affect the excitable variable x, which
is interpreted as the membrane potential. Other choices of
types of noise and its coupling to the neurons are also plau-
sible, but the one in Eqs. �1� is the simplest.

We shall analyze the influence of noise in the following
four cases of exactly synchronous dynamics that occur in the
noiseless pair of delayed coupled HR neurons: ��� I= I0�0
�=0, c�0, �c� large; ��� I= I0�0, ��0, c�0, �c� small; ���
I= I0�0, ��0, c�0, �c� small; and ��� I=0, ��0, c�0, �c�
sufficiently large. In cases � and �, analyzed in �2�, the dy-
namics of each of the neurons is that of bursting even when
they are exactly synchronous. In case � the neurons behave
as relaxation oscillators for the coupling and the time lag that
imply exact synchronization. In case � �analyzed in �4�� and
for 0�c�c0 the neurons have only one attractor corre-
sponding to the quiescent state. For c�c0 and �=0 the burst-
ing starts and the bursting periods of one of the neurons
coincide with the quiescent phase of the other. The time lag
in an interval around sufficiently large � leads to exact syn-
chronization. In what follows we shall study: �i� the influ-
ence of noise on the stability of the stationary state in case �
that represents the quiescent behavior and �ii� the stability to
noise of the exact synchronization in the four cases. Here, the
main conclusion will be that a small noise completely de-
stroys the exact synchrony achieved by an appropriate time*buric@phy.bg.ac.yu
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delay with weak coupling �cases � and ��, and only slightly
disturbs the exact synchrony that occurs with sufficiently
strong coupling �with �case �� or without �case �� the non-
zero time lag�.

Many properties of single or instantaneously coupled ex-
citable systems with noise, like coherent or stochastic reso-
nance, have been studied before. These studies have been
collected in numerous reviews, for example, in �5�. Time-
delayed feedback in a single noise neuron was also studied
before, for example, in �6�. Instantaneously coupled noisy
neurons have also been analyzed �7�. Bifurcations and syn-
chronization in delayed coupled excitable neurons without
noise have been studied for example in �8� �see the refer-
ences therein� �9�. The stability of delay-differential systems
with noise was studied analytically, for example, in the con-
text of coupled realistic and formal neural networks. Liao
and Mao �10� have initiated the study of stability in stochas-
tic neural networks, and this was extended to stochastic neu-
ral networks with discrete time delays in Refs. �11,12�. How-
ever, the influence of noise on delayed coupled bursting
neurons, in particular the influence on the important effects,
such as the delay induced death of bursting or facilitation of
bursting synchronization by delay, have not been analyzed
before.

II. NOISE AND STABILITY OF THE QUIESCENT STATE

The parameter values I=0, r=0.0021, and S=4 imply that
an isolated Hidmarsh-Rose neuron �2� has only one attractor:
the stable stationary state at �x0 ,y0 ,z0�= �−1.60453,
−11.8726,−0.01812�. The noiseless system �1� for D=0 is
characterized by the fact that the coupling destabilizes the
stationary state for c=c0=0.674 522, �=0, and then slow os-
cillations of the z variable lead the system through the burst-
ing behavior. The bifurcation at c=c0 is the generalized Hopf
bifurcation �Bautin bifurcation�. Increasing the time lag from
zero leads to a sequence of Hopf bifurcations, illustrated in
Fig. 1�a� by thick curves. The thick curve with positive slope
corresponds to the subcritical Hopf, and the thick curves
with negative slope represent the supercritical Hopf bifurca-

tions. Similarly to the case of coupled FitzHugh neurons
�8,9�, there is a region between the two lowest Hopf curves
where the stationary state is stabilized by the appropriate
nonzero time lag. We shall be interested in the effects of
noise on the stability of the stationary state.

Mathematically correct definitions of various types of sto-
chastic stability of the rest state for a system of SDEs are
formulated in terms of the probabilities given by the stochas-
tic process that is a solution of the SDEs �13�. However, our
approach will be heuristic. We might expect that when the
system is close to the Hopf bifurcation relatively small noise
should be enough to push the stationary state from its small
stability neighborhood. The minimal D that could destabilize
the small fluctuations near the rest state and lead to large
oscillations of z variable, with consequent bursting dynam-
ics, can be roughly estimated as follows. The method con-
sists in shifting the coordinates of the rest state in the stan-
dard linear stability analysis by an amount that is likely to
occur in the time interval dt due to small noisy
fluctuations—that is, by the distance equal to the intensity of
the noise D. It is remarkable that such a crude ansatz gives
estimates of the critical values of D that agree well with
numerical calculations.

The stability of the stationary state of the noiseless system
�1� does not depend on the values y0 and z0 but depends on
x0. The substitution x0→x0+D provides estimates of the
critical D. Figure 1�a� represent the Hopf bifurcation curves
��c� for x0 corresponding to the noiseless system �solid lines�
and with x0→x0+D �dotted curves� for fixed D=0.001. Fig-
ure 1�b� illustrates the numerical tests of the predictions
given by the dotted curves in Fig. 1�a�. Let us first observe
that the domain of �c ,�� that corresponds to the stationary
state stabilized by the time delay, the domain between dotted
curves, is shrunk by noise, but still exists for quite large
values of D. All sample time series in Fig. 1�b� correspond to
�c ,�� values in between the solid lines—i.e., to the stability
domain of the noiseless system. Since the value D=0.001 is
quite small, the difference between the dotted and solid
curves is almost undetectable on the scale of the figure. Nev-
ertheless, the simple ansatz predicts that for �c ,�� values that
are below the lower dotted and above the upper dotted curve
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FIG. 1. �a� Hopf bifurcations curves ��c� for
the noiseless system �solid lines� and those pre-
dicted by x0→x0+D for D=0.001. �b� Sample
time series of bursting x1�t� for �c ,��
= �0.7,17.5� �thick solid line�, �0.7,84� �thick
dashed line� and quiescent �c ,��= �0.7,18.7�,
�thin solid line� �0.7,82� �thin-dashed line� states.
Other parameters are D=0.001 and I=0, r
=0.0021, S=4.
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in Fig. 1�a� the quiescent state should be unstable, illustrated
in Fig. 1�b� where two of the sample time series represent
stable bursting �thick lines in Fig. 1�b�� and stable �repre-
sented by thin lines in Fig. 1�b�� for �c ,�� values that are in
between the dotted curves in Fig. 1�a�.

III. NOISE AND EXACT SYNCHRONIZATION

The exact synchronization of a delayed coupled pair of
noiseless HR neurons was studied in �2� for the case � and in
�4� for the case �. The main result of �2� and �4� is the
observation of the potentially important fact that the time
delay in a proper interval facilitates exact synchronization.
However, we shall now demonstrate that quite small values
of the noise destroy the exact synchrony achieved with the
help of an appropriate time lag, contrary to the exact syn-
chronization at sufficiently strong coupling. Consequently
the facilitation of synchronization by time delay should be
considered as an unstable effect, which is certainly much less
preferable in realistic systems than exact synchronization
with strong coupling �and or without the time delay�.

We shall discuss the results of our numerical computa-
tions by commenting on the data presented in Figs. 2–4.

Cases � and � are illustrated in Fig. 2. Figures 2�a� and
2�b� illustrate exact synchronization for small negative c,
achieved by a nonzero time lag, and Fig. 2�c� illustrates the
unproportionally large effects of a quite small noise. Smaller
or larger values of D induce qualitatively the same destruc-
tion of the exact synchrony. Obviously, small noise has com-
pletely destroyed what has been achieved by the time delay,
so that the dynamics in Fig. 2�c� is as asynchronous as that in
Fig. 2�a�. On the other hand, Fig. 2�d� illustrates the effect of
noise on the exact synchrony due to strong coupling �no time
delay�. The effect is proportional to the intensity of the noise.

In Figs. 3�a�–3�d� we illustrate case �—i.e., exact syn-
chronization with weak positive coupling and an appropriate
time delay between the HR bursters �Figs. 3�a�–3�c�� and the
effects of small noise �Fig. 3�d��. The exactly synchronized
neurons display periodic spiking. The exact synchrony
achieved by the time delay is completely destroyed by very
small noise, but the time difference between the spiking
times of the two neurons is smaller than in the nonsynchro-
nized noiseless situation �Fig. 3�b��.

The effects of noise in case � of bursting induced by
coupling and the exact synchronization by the time delay are
illustrated in Fig. 4. In the exactly synchronized situation the
two neurons are most of the time in the quiescent state which
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FIG. 2. The effect of a small noise in cases � and �. The pa-
rameters are I=3.2, r=0.006, S=4 and �a� c=−0.1, �=0, D=0, �b�
c=−0.1, �=8, D=0 �like in �2��, �c� c=−0.1, �=8, D=0.001, and
�d� c=−0.45, �=0, D=0.001. Shown are z1�t� and x1�t� �solid line�
and z2�t� and x2�t� �dotted line�.
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FIG. 3. The effect of a small noise in case �. The parameters are
I=3.2, r=0.006, S=4 and �a� c=0.0, �=0, D=0, �b� c=0.1, �=0,
D=0, �c� c=0.1, �=8, D=0.0, and �d� c=0.1, �=8, D=0.001.
Shown are z1�t� and x1�t� �solid line� and z2�t� and x2�t� �dotted
line� in �a�, �b�, �c�, and (x1�t� ,x2�t�) in �d�.
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is interrupted by short periods of bursts. The crucial effect of
a small noise is to desynchronize the initiation of bursting
periods and the spikes within the burst, but both neurons are
still most of the time in the slightly fluctuating quiescent
state. Nevertheless, a large part of the manifold of the exact
synchronization is destabilized by the small noise �Fig. 4�d��.

A qualitative explanation of the destructive effect of noise
on the exact synchrony is as follows. The beginning of a

burst in xi�t� corresponds to the minimum of zi�t� and the end
of the burst occurs at the following maxima. The time that
corresponds to minima in zi is a random variable, with not
necessarily equal realizations for i=1 and i=2—i.e., for the
two neurons. This leads to a small time difference between
the timing of the initiation of bursts in the two neurons, but a
large difference in x1 and x2 variables.

The previous argument is based on the stochastic distri-
bution of minima and maxima of the slowly oscillating func-
tion zi�t�. Two-dimensional models of spiking neurons can be
obtained by fixing z to different values. Consequently, and
contrary to the bursting synchronization, in the case of spik-
ing synchronization, small stochastic perturbations, in gen-
eral, only slightly influence the type of synchronization that
is present in the deterministic system. Even if the spiking in
different neurons might start at slightly different times, like
each of the bursting periods in the noisy bursters, the cou-
pling soon leads to the type of synchronization that occurs in
the noiseless case with only small fluctuations around the
synchronization manifold.

In summary, we have studied the influence of white noise
on the stability of the quiescent state and synchronization of
bursting in a delayed coupled pair of Hidmarsh-Rose neu-
rons. There is very little influence of noise on the stability of
the quiescent state, which can be detected only when the
system is near the bifurcations. In this domain, a simple an-
satz provides relatively correct estimates of the critical noise
intensity that can destabilize the stationary state. On the
other hand, the noise has a devastating effect on the exact
synchronization that occurs in the noiseless system due to
proper time lags in the coupling. Already quite small noise
completely destroys the effect of time delay on the exact
synchronization. This suggests that facilitation by the time
delay of the exact synchrony should not be expected in ex-
periments with real bursting neurons.
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FIG. 4. The effect of a small noise in case �. The parameters are
I=0, r=0.0021, S=4 and �a� c=0.8, �=0, D=0, �b� c=0.8, �=75,
D=0, and �c� and �d� c=0.8, �=75, D=0.001. Shown are z1�t� and
x1�t� �solid line� and z2�t� and x2�t� �dotted line� in �a�, �b�, �c� and
(x1�t� ,x2�t�) in �d�.
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